Published in

Wiley, Small, 11(3), p. 1906-1911, 2007

DOI: 10.1002/smll.200700284

Links

Tools

Export citation

Search in Google Scholar

Relaxor Behavior, Polarization Buildup, and Switching in Nanostructured 0.92 PbZn1/3Nb2/3O3–0.08 PbTiO3 Ceramics

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The relaxor-type behavior, electrical polarization buildup, and switching in 0.92Pb(Zn(1/3)Nb(2/3))O(3)-0.08PbTiO(3) nanostructured ceramics with a grain size of approximately 20 nm is reported for the first time. This composition presents the highest-known piezoelectric coefficients, yet phase stability is an issue. Ceramics can only be obtained by the combination of mechanosynthesis and spark-plasma sintering. The results raise the possibility of using nanoscale, perovskite-relaxor-based morphotropic-phase-boundary materials for sensing and actuation in nanoelectromechanical systems.