Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, The Journal of Physical Chemistry A, 37(111), p. 9034-9046, 2007

DOI: 10.1021/jp070185x

Links

Tools

Export citation

Search in Google Scholar

Relative Tropospheric Photolysis Rates of HCHO and HCDO Measured at the European Photoreactor Facility

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The relative photolysis rates of HCHO and HCDO have been studied in May 2004 at the European Photoreactor Facility (EUPHORE) in Valencia, Spain. The photolytic loss of HCDO was measured relative to HCHO by long path FT-IR and DOAS detection during the course of the experiment. The isotopic composition of the reaction product H(2) was determined by isotope ratio mass spectrometry (IRMS) on air samples taken during the photolysis experiments. The relative photolysis rate obtained by FTIR is j(HCHO)/j(HCDO) = 1.58 +/- 0.03. The ratios of the photolysis rates for the molecular and the radical channels obtained from the IRMS data, in combination with the quantum yield of the molecular channel in the photolysis of HCHO, Phi(HCHO-->H(2)+CO) (JPL Publication 06-2), are j(HCHO-->H(2)+CO/jHCDO-->HD+CO) = 1.82 +/- 0.07 and j(HCHO-->H+HCO/(jHCDO-->H+DCO + jHCDO-->D+HCO)) = 1.10 +/- 0.06. The atmospheric implications of the large isotope effect in the relative rate of photolysis and quantum yield of the formaldehyde isotopologues are discussed in relation to the global hydrogen budget.