Published in

Elsevier, Applied Surface Science, 1-4(166), p. 278-283

DOI: 10.1016/s0169-4332(00)00407-4

Links

Tools

Export citation

Search in Google Scholar

Excitons as a probe of interface morphology in Cd(Zn)Se/ZnSe heterostructures

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present studies of the excitonic spectrum in superlattices (SLs) of CdSe insertions in a ZnSe matrix aimed at elucidating the CdSe/ZnSe interface morphology. The experimental photoluminescence excitation spectra are compared with the results of variational exciton calculations performed within the effective mass approximation. The shape of the average vertical (along the SL growth axis) distribution of CdSe within each insertion, used in the calculations, was obtained from a theoretical simulation of X-ray diffraction (XRD) rocking curves measured in the same samples. The results indicate that the thinnest layers are graded composition ZnCdSe quantum wells (QWs), generally homogeneous in the layer planes, whereas flat islands enriched by Cd appear at the CdSe nominal thickness larger than 0.5–0.6 monolayer (ML).