Published in

American Chemical Society, Nano Letters, 1(7), p. 86-92, 2006

DOI: 10.1021/nl0622000

Links

Tools

Export citation

Search in Google Scholar

Excitons and Peierls Distortion in Conjugated Carbon Nanotubes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We investigate coupled excitonic and vibrational effects in carbon nanotubes using a time-dependent Hartree-Fock approach. The results reveal intricate details of excited-state dynamics. In the ground state, spontaneous uneven distribution of the pi electrons over the bonds (i.e., Peierls dimerization) is observed throughout the entire nanotube, particularly in large-radius CNTs. However, we demonstrate that vibrational relaxation following photoexcitations leads to substantial local distortion of the tube surface, overriding the Peierls dimerization. This mutually affects the electronic system, resulting in localized states (self-trapped excitons). These phenomena critically control photoinduced dynamics and charge transport in nanotube materials.