Published in

Nature Research, Nature Physics, 9(2), p. 631-635, 2006

DOI: 10.1038/nphys389

Links

Tools

Export citation

Search in Google Scholar

Exciton scattering and localization in branched dendrimeric structures

Journal article published in 2006 by Chao Wu, Sergey V. Malinin, Sergei Tretiak ORCID, Vladimir Y. Chernyak
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

-conjugated dendrimers are molecular examples of tree-like structures known in physics as Bethe lattices. Electronic excitations in these systems can be spatially delocalized or localized depending on the branching topology. Without a priori knowledge of the localization pattern, understanding photoexcitation dynamics reflected in experimental optical spectra is difficult. 'Supramolecular'-like quantum-chemical calculations quickly become intractable as the molecular size increases. Here we develop a reduced exciton-scattering (ES) model, which attributes excited states to standing waves in quasi-one-dimensional structures, assuming a quasiparticle picture of optical excitations. Direct quantum-chemical calculations of branched phenylacetylene chromophores are used to verify our model and to derive relevant parameters. Complex and non-trivial delocalization patterns of photoexcitations throughout the entire molecular tree can then be universally characterized and understood using the proposed ES method, completely bypassing 'supramolecular' calculations. This allows accurate modelling of excited-state dynamics in arbitrary branched structures.