Published in

American Chemical Society, Inorganic Chemistry, 17(53), p. 8970-8978, 2014

DOI: 10.1021/ic500885r

Links

Tools

Export citation

Search in Google Scholar

Exchange Interactions at the Origin of Slow Relaxation of the Magnetization in {TbCu3} and {DyCu3} Single-Molecule Magnets

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

New {TbCu3} and {DyCu3} single-molecule magnets (SMMs) containing a low-symmetry Ln(III) center (shape measurements relative to a trigonal dodecahedron and biaugmented trigonal prism are 2.2-2.3) surrounded by three Cu(II) metalloligands are reported. SMM behavior is confirmed by frequency-dependent out-of-phase ac susceptibility signals and single-crystal temperature and sweep rate dependent hysteresis loops. The ferromagnetic exchange interactions between the central Ln(III) ion and the three Cu(II) ions could be accurately measured by inelastic neutron scattering (INS) spectroscopy and modeled effectively. The excitations observed by INS correspond to flipping of Cu(II) spins and appear at energies similar to the thermodynamic barrier for relaxation of the magnetization, ∼15-20 K, and are thus at the origin of the SMM behavior. The magnetic quantum number Mtot of the cluster ground state of {DyCu3} is an integer, whereas it is a half-integer for {TbCu3}, which explains their vastly different quantum tunneling of the magnetization behavior despite similar energy barriers.