Published in

Elsevier, BBA - General Subjects, 1-3(1569), p. 51-58

DOI: 10.1016/s0304-4165(01)00233-1

Links

Tools

Export citation

Search in Google Scholar

Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery

Journal article published in 2002 by Julie Gehl ORCID, Torben Skovsgaard, Lluis M. Mir
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In vivo electroporation (EP) is gaining momentum for drug and gene delivery. In particular, DNA transfer by EP to muscle tissue can lead to highly efficient long-term gene expression. We characterized a vascular effect of in vivo EP and its consequences for drug and gene delivery. Pulses of 10-20,000 micros and 0.1-1.6 kV/cm were applied over hind- and forelimb of mice and perfusion was examined by dye injection. The role of a sympathetically mediated vasoconstrictory reflex was investigated by pretreatment with reserpine. Expression of a transferred gene (luciferase), permeabilization (determined using (51)Cr-EDTA), membrane resealing and effects on perfusion were compared to assess the significance of the vascular effects. Above the permeabilization threshold, a sympathetically mediated Raynaud-like phenomenon with perfusion delays of 1-2 min was observed. Resolution of this phase followed kinetics of membrane resealing. Above a second threshold, irreversible permeabilization led to long perfusion delays. These vascular reactions (1) affect kinetics of drug delivery, (2) predict efficient DNA transfer, which is optimal during short perfusion delays, and (3) might explain electrocardiographic ST segment depressions after defibrillation as being caused by vascular effects of EP of cardiac muscle.