Published in

Public Library of Science, PLoS ONE, 6(8), p. e67453, 2013

DOI: 10.1371/journal.pone.0067453

Links

Tools

Export citation

Search in Google Scholar

Targeting Leishmania major Antigens to Dendritic Cells In Vivo Induces Protective Immunity

Journal article published in 2013 by Ines Matos, Olga Mizenina, Ashira Lubkin ORCID, Ralph M. Steinman, Juliana Idoyaga
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Efficient vaccination against the parasite Leishmania major, the causative agent of human cutaneous leishmaniasis, requires development of type 1 T-helper (Th1) CD4(+) T cell immunity. Because of their unique capacity to initiate and modulate immune responses, dendritic cells (DCs) are attractive targets for development of novel vaccines. In this study, for the first time, we investigated the capacity of a DC-targeted vaccine to induce protective responses against L. major. To this end, we genetically engineered the N-terminal portion of the stress-inducible 1 protein of L. major (LmSTI1a) into anti-DEC205/CD205 (DEC) monoclonal antibody (mAb) and thereby delivered the conjugated protein to DEC(+) DCs in situ in the intact animal. Delivery of LmSTI1a to adjuvant-matured DCs increased the frequency of antigen-specific CD4(+) T cells producing IFN-γ(+), IL-2(+), and TNF-α(+) in two different strains of mice (C57BL/6 and Balb/c), while such responses were not observed with the same doses of a control Ig-LmSTI1a mAb without receptor affinity or with non-targeted LmSTI1a protein. Using a peptide library for LmSTI1a, we identified at least two distinct CD4(+) T cell mimetopes in each MHC class II haplotype, consistent with the induction of broad immunity. When we compared T cell immune responses generated after targeting DCs with LmSTI1a or other L. major antigens, including LACK (Leishmania receptor for activated C kinase) and LeIF (Leishmania eukaryotic ribosomal elongation and initiation factor 4a), we found that LmSTI1a was superior for generation of IFN-γ-producing CD4(+) T cells, which correlated with higher protection of susceptible Balb/c mice to a challenge with L. major. For the first time, this study demonstrates the potential of a DC-targeted vaccine as a novel approach for cutaneous leishmaniasis, an increasing public health concern that has no currently available effective treatment.