Published in

American Geophysical Union, Geophysical Research Letters, 19(41), p. 6603-6609, 2014

DOI: 10.1002/2014gl061471

Links

Tools

Export citation

Search in Google Scholar

The winter helium bulge revisited: LIU ET AL.: HELIUM BULGE REVISITED

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

A newly implemented helium module in The National Center for Atmospheric Research-Thermosphere Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) offers the first opportunity in three decades to describe helium behavior in the context of a first principles, self-consistent model, and to test early theories of wintertime helium bulge formation. This study shows general agreement with the findings of Reber and Hays [1973] but articulates the definitive role of vertical advection in the bulge formation. Our findings indicate vertical advection and molecular diffusion are the dominate processes responsible for the solstice helium distribution. Horizontal winds indirectly contribute to the helium bulge formation by their divergent wind field that leads to vertical winds in order to maintain thermosphere mass continuity. As a minor gas, thermospheric helium does not contribute to mass continuity and its distribution is dictated by more local interactions and constraints.