Dissemin is shutting down on January 1st, 2025

Published in

Optica, Optics Express, 5(20), p. 5419, 2012

DOI: 10.1364/oe.20.005419

Links

Tools

Export citation

Search in Google Scholar

Generalized ellipsometry in-situ quantification of organic adsorbate attachment within slanted columnar thin films

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We apply generalized ellipsometry, well-known to be sensitive to the optical properties of anisotropic materials, to determine the amount of fibronectin protein that adsorbs onto a Ti slanted columnar thin film from solution. We find that the anisotropic optical properties of the thin film change upon organic adsorption. An optical model for ellipsometry data analysis incorporates an anisotropic Bruggeman effective medium approximation. We find that differences in experimental data from before and after fibronectin adsorption can be solely attributable to the uptake of fibronectin within the slanted columnar thin film. Simultaneous, in-situ generalized ellipsometry and quartz crystal microbalance measurements show excellent agreement on the amount and rate of fibronectin adsorption. Quantitative characterization of organic materials within three-dimensional, optically anisotropic slanted columnar thin films could permit their use in optical sensor applications.