Dissemin is shutting down on January 1st, 2025

Published in

Cell Press, Neuron, 3(23), p. 537-548, 1999

DOI: 10.1016/s0896-6273(00)80806-5

Links

Tools

Export citation

Search in Google Scholar

Targeted Deletion of the Vgf Gene Indicates that the Encoded Secretory Peptide Precursor Plays a Novel Role in the Regulation of Energy Balance

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To determine the function of VGF, a secreted polypeptide that is synthesized by neurons, is abundant in the hypothalamus, and is regulated in the brain by electrical activity, injury, and the circadian clock, we generated knockout mice lacking Vgf. Homozygous mutants are small, hypermetabolic, hyperactive, and infertile, with markedly reduced leptin levels and fat stores and altered hypothalamic proopiomelanocortin (POMC), neuropeptide Y (NPY), and agouti-related peptide (AGRP) expression. Furthermore, VGF mRNA synthesis is induced in the hypothalamic arcuate nuclei of fasted normal mice. VGF therefore plays a critical role in the regulation of energy homeostasis, suggesting that the study of lean VGF mutant mice may provide insight into wasting disorders and, moreover, that pharmacological antagonism of VGF action(s) might constitute the basis for treatment of obesity.