Published in

American Astronomical Society, Astrophysical Journal, 2(675), p. 1518-1530, 2008

DOI: 10.1086/526411

Links

Tools

Export citation

Search in Google Scholar

Orbital Parameters and Chemical Composition of Four White Dwarfs in Post-Common Envelope Binaries

Journal article published in 2007 by Adela Kawka ORCID, Stephane Vennes, Jean Dupuis, Pierre Chayer, Thierry Lanz
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present FUSE observations of the hot white dwarfs in the post-common envelope binaries Feige 24, EUVE J0720-317, BPM 6502, and EUVE J2013+400. The spectra show numerous photospheric absorption lines which trace the white dwarf orbital motion. We report the detection of C III, O VI, P V, and Si IV in the spectra of Feige 24, EUVE J0720-317 and EUVE J2013+400, and the detection of C III, N II, Si III, Si IV, and Fe III in the spectra of BPM 6502. Abundance measurements support the possibility that white dwarfs in post-common envelope binaries accrete material from the secondary star wind. The FUSE observations of BPM 6502 and EUVE J2013+400 cover a complete binary orbit. We used the FUSE spectra to measure the radial velocities traced by the white dwarf in the four binaries, where the zero-point velocity were fixed using the ISM velocities in the line of sight of the stellar systems. For BPM 6502 we determined a white dwarf velocity semi-amplitude of K_WD = 18.6+/-0.5km/s, and with the velocity semi-amplitude of the red dwarf companion (K_RD = 75.2+/-3.1 km/s), we estimate the mass ratio to be q = 0.25+/-0.01. Adopting a spectroscopic mass determination for the white dwarf, we infer a low secondary mass of M_RD = 0.14+/-0.01 M_solar. For EUVE J2013+400 we determine a white dwarf velocity semi-amplitude of K_WD = 36.7+/-0.7 km/s. The FUSE observations of EUVE J0720-317 cover approximately 30% of the binary period and combined with the HST GHRS measurements (Vennes et al. 1999, ApJ 523, 386), we update the binary properties. FUSE observations of Feige 24 cover approximately 60% of the orbit and we combine this data set with HST STIS (Vennes et al. 2000, ApJ, 544, 423) data to update the binary properties. Comment: Accepted for publication in ApJ