Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Journal of Physics: Condensed Matter, 11(27), p. 115501

DOI: 10.1088/0953-8984/27/11/115501

Links

Tools

Export citation

Search in Google Scholar

Vacancy filling effect in thermoelectric NbO

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Using density functional theory, we have systematically explored the 1a and 1b vacancy filling in NbO (space group Pm-3m) with Nb and N, respectively, to design compounds with large Seebeck coefficients. The most dominating effect was identified for filling of 1b Wyckoff sites with N giving rise to a fivefold increase in the Seebeck coefficient. This may be understood based on the electronic structure. Nb d-nonmetal p hybridization induces quantum confinement and hence enables the enhancement of the Seebeck coefficient. This was validated by measuring the Seebeck coefficient of reactively sputtered thin films. At 800 °C these electrically conductive oxynitrides exhibit the Seebeck coefficient of -70 µV K(-1), which is the largest absolute value ever reported for these compounds.