Published in

Springer Verlag, Plant Molecular Biology, 4-5(83), p. 433-443

DOI: 10.1007/s11103-013-0101-9

Links

Tools

Export citation

Search in Google Scholar

Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

microRNAs (miRNAs) are novel and significant regulators of gene expression at the post-transcriptional level, and they are essential for normal growth and development and adaptation to stress conditions. As miRNAs are a kind of RNAs that do not code proteins, they play roles by repressing gene translation or degrading the corresponding target mRNAs. Plantacyanin-like (basic blue) proteins have been predicted and verified as the target gene of miR408 in wheat and Arabidopsis, respectively. Besides some biochemical characteristics, their detailed biological function remains unknown. In this study, the target gene of a wheat miRNA (tae-miR408), designated TaCLP1, was identified using degradome sequencing and co-transformation technology in tobacco leaves. We isolated the full-length cDNA clone, and defined its product as a chemocyanin-like protein, a kind of plantacyanin. Transcript accumulation of TaCLP1 and tae-miR408 showed contrasting divergent expression patterns in wheat response to Puccinia striiformis f. sp. tritici (Pst) and high copper ion stress. Overexpression of TaCLP1 in yeast (Schizosaccharomyces pombe) significantly increased cell growth under high salinity and Cu(2+) stresses. Silencing of individual cDNA clones in wheat challenged with Pst indicated that TaCLP1 positively regulates resistance to stripe rust. The results indicate that the target of tae-miR408, TaCLP1, play an important role in regulating resistance of host plants to abiotic stresses and stripe rust, and such interactions can be a valuable resource for investigating stress tolerance in wheat.