Published in

American Institute of Physics, Applied Physics Letters, 20(100), p. 203905

DOI: 10.1063/1.4714902

Links

Tools

Export citation

Search in Google Scholar

Generalized approach to the description of recombination kinetics in bulk heterojunction solar cells---extending from fully organic to hybrid solar cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Lately, research efforts in photovoltaics towards hybrid solar cells based on nanostructured metal oxides and conjugated polymers have been intensifying. However, very limited effort has been spent so far to investigate their recombination kinetics in comparison with their fully organic counterpart. In this work, impedance spectroscopy under different illumination intensities is used to probe the recombination kinetics of hybrid solar cells based on ZnO nanorod arrays and poly(3-hexylthiophene). A recombination-based model developed for fully organic solar cells is effectively applied in our hybrid solar cells, demonstrating their similarity in device physics and establishing the nanorod array/polymer compound as true bulk heterojunction.