Published in

American Heart Association, Circulation Research, 11(98), p. 1365-1372, 2006

DOI: 10.1161/01.res.0000225911.24228.9c

Links

Tools

Export citation

Search in Google Scholar

Identification of a Novel Peptide That Interferes With the Chemical Regulation of Connexin43

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The carboxyl-terminal domain of connexin43 (Cx43CT) is involved in various intra- and intermolecular interactions that regulate gap junctions. Here, we used phage display to identify novel peptidic sequences that bind Cx43CT and modify Cx43 regulation. We found that Cx43CT binds preferentially to peptides containing a sequence RXP, where X represents any amino acid and R and P correspond to the amino acids arginine and proline, respectively. A biased “RXP library” led to the identification of a peptide (dubbed “RXP-E”) that bound Cx43CT with high affinity. Nuclear magnetic resonance data showed RXP-E–induced shifts in the resonance peaks of residues 343 to 346 and 376 to 379 of Cx43CT. Patch-clamp studies revealed that RXP-E partially prevented octanol-induced and acidification-induced uncoupling in Cx43-expressing cells. Moreover, RXP-E increased mean open time of Cx43 channels. The full effect of RXP-E was dependent on the integrity of the CT domain. These data suggest that RXP-based peptides could serve as tools to help determine the role of Cx43 as a regulator of function in conditions such as ischemia-induced arrhythmias.