Published in

Trans Tech Publications, Advanced Materials Research, (409), p. 117-122, 2011

DOI: 10.4028/www.scientific.net/amr.409.117

Links

Tools

Export citation

Search in Google Scholar

On the Interface between Plasma Fluorocarbon Films and 316L Stainless Steel Substrates for Advanced Coated Stents

Journal article published in 2011 by Maxime Cloutier, Stéphane Turgeon, Pascale Chevallier, Diego Mantovani
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

As intravascular biomedical devices, metallic stents are particularly susceptible to corrosion induced by the physiological environment, causing the degradation of mechanical properties and leading to the release of toxic and carcinogenic ions from the SS316L bulk. Therefore, several works have been focused on the development of an ultra-thin fluorocarbon coating that could act both as a drug-carrier for in-stent restenosis and as an anti-corrosion barrier. However, the increase of the corrosion performance was limited by the inevitable permeability of the coating, which exposed some of the sensitive interfacial region to the corrosive environment. Indeed, in previous works, adhesion and growth rate of the film were promoted by the removal of the native oxide layer of the stainless steel which is inhomogeneous, brittle and mechanically unstable. Further refinements of the interface are therefore required in order to enhance the overall corrosion performance without compromising the fluorocarbon film properties and adhesion. Hence, the aim of this work was to enhance the corrosion behaviour of coated SS316L by the creation of a controlled interfacial oxide layer. The native oxide layer was first removed under vacuum and the bare metal surface was subjected to a plasma-reoxidation treatment. Tafel measurements were used to assess the corrosion rates of the specimens. Coated and uncoated modified interfaces were also characterized by X-Ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM).