Published in

Elsevier, Bioorganic and Medicinal Chemistry, 1(17), p. 13-24

DOI: 10.1016/j.bmc.2008.11.024

Links

Tools

Export citation

Search in Google Scholar

Molecular modelling studies, synthesis and biological activity of a series of novel bisnaphthalimides and their development as new DNA topoisomerase II inhibitors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A series of bisnaphthalimide derivatives were synthesized and evaluated for growth-inhibitory property against HT-29 human colon carcinoma. The N,N'-bis[2-(5-nitro-1,3-dioxo-2,3-dihydro-1H-benz[de]-isoquinolin-2-yl)]propane-2-ethanediamine (9) and the N,N'-Bis[2-(5-nitro-1,3-dioxo-2,3-dihydro-1H-benz[de]-isoquinolin-2-yl)]butylaminoethyl]-2-propanediamine (12) derivatives emerged as the most potent compounds of this series. Molecular modelling studies indicated that the high potency of 12, the most cytotoxic compound of the whole series, could be due to larger number of intermolecular interactions and to the best position of the naphthalimido rings, which favours pi-pi stacking interactions with purine and pyrimidine bases in the DNA active site. Moreover, 12 was designed as a DNA topoisomerase II poison and biochemical studies showed its effect on human DNA topoisomerase II. We then selected the compounds with a significant cytotoxicity for apoptosis assay. Derivative 9 was able to induce significantly apoptosis (40%) at 0.1 microM concentration, and we demonstrated that the effect on apoptosis in HT-29 cells is mediated by caspases activation.