Published in

Wiley Open Access, FASEB Journal, 14(21), p. 3827-3834, 2007

DOI: 10.1096/fj.07-8777com

Links

Tools

Export citation

Search in Google Scholar

A novel enzyme complementation-based assay for monitoring G-protein-coupled receptor internalization

Journal article published in 2007 by Mark M. Hammer ORCID, Tom S. Wehrman, Helen M. Blau
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

G-protein-coupled receptor (GPCR) signaling is involved in a wide range of physiological processes and diseases, and around one-half of currently used drugs target GPCRs. Assays for the signaling of GPCRs have suffered from drawbacks, including low signal-to-noise, temporally transient signals, and difficulty in applying a single assay to a wide range of GPCRs. We have developed a set of assays for G-protein-coupled receptor signaling based on beta-galactosidase enzyme complementation in live mammalian cells. We previously described an assay for GPCR activation by monitoring the binding of beta-arrestin to the receptor. Here we describe a second assay that monitors the internalization of GPCRs to endosomes, an event that follows receptor activation and is critical in desensitizing and resensitizing the receptor. We show that both assays display high signal-to-noise ratios with low variability and are quantitative for a wide range of GPCRs. EC50s obtained with these assays closely match results reported in the literature. Finally, we show that these assays are readily adapted to high-throughput chemical screens. Thus, these two assays for monitoring G-protein-coupled receptor activation and internalization should prove valuable in basic biological studies as well as in high-throughput screens.