Published in

Elsevier, Chemical Engineering Journal, (256), p. 155-159

DOI: 10.1016/j.cej.2014.06.076

Links

Tools

Export citation

Search in Google Scholar

A novel dual-layer bicomponent electrospun nanofibrous membrane for desalination by direct contact membrane distillation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this study, a bicomponent nanofibrous composite membrane was fabricated by electrospinning and was tested for desalination by direct contact membrane distillation (DCMD). The nanofibrous membrane was composed of a dual-layered structure of poly(vinylidene fluoride-co-hexafluoropropylene) (PH) nanofibers and polyacrylonitrile (PAN) microfibers. Morphological characterization showed slightly beaded cylindrical PH nanofibers with porosity of about 90%. The contact angles of PH and PAN nano/microfibers were 150 degrees and 100 degrees, respectively. The nanofibrous membranes were tested by DCMD and a high water flux of 45 and 30 L m(-2) h(-1) was obtained for distilled water and 35 g L-1 NaCl solutions as feed, respectively using DL2 membrane (i.e., 25/75 PH/PAN thickness ratio). The present dual-layer membrane showed better flux performance compared to a commercial flat-sheet membrane. The results suggest the potential of the dual-layer nanofibrous membrane for DCMD applications.