Published in

Springer (part of Springer Nature), Cellular and Molecular Life Sciences, 13(62), p. 1462-1477

DOI: 10.1007/s00018-005-5015-5

Links

Tools

Export citation

Search in Google Scholar

Molecular mechanism of actomyosin-based motility

Journal article published in 2005 by M. A. Geeves, R. Fedorov ORCID, D. J. Manstein
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sophisticated molecular genetic, biochemical and biophysical studies have been used to probe the molecular mechanism of actomyosin-based motility. Recent solution measurements, high-resolution structures of recombinant myosin motor domains, and lower resolution structures of the complex formed by filamentous actin and the myosin motor domain provide detailed insights into the mechanism of chemomechanical coupling in the actomyosin system. They show how small conformational changes are amplified by a lever-arm mechanism to a working stroke of several nanometres, explain the mechanism that governs the directionality of actin-based movement, and reveal a communication pathway between the nucleotide binding pocket and the actin-binding region that explains the reciprocal relationship between actin and nucleotide affinity. Here we focus on the interacting elements in the actomyosin system and the communication pathways in the myosin motor domain that respond to actin binding.