Published in

American Chemical Society, Journal of the American Chemical Society, 16(126), p. 5234-5242, 2004

DOI: 10.1021/ja031600b

Links

Tools

Export citation

Search in Google Scholar

Molecular Interactions in One-Dimensional Organic Nanostructures

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Intermolecular interactions involving pi-pi interaction and hydrogen bonding are used to create one-dimensional molecular nanostructures of hexasubstituted aromatics. Site-selective steady state fluorescence, time-resolved fluorescence, scanning electron microscopy, and atomic force microscopy measurements detail the intermolecular interactions that drive the aromatic molecules to self-assemble in solution to form well-ordered columnar stacks. These nanostructures, formed in solution, vary in their number, size, and structure depending on the solvent used. In addition, our results indicate that the substituents/ side groups and the proper choice of the solvent can be used to tune the intermolecular interactions. The 1D stacks and their aggregates can be easily transferred by solution casting, thus allowing a simple preparation of molecular nanostructures on different surfaces.