Published in

Frontiers Media, Frontiers in Ecology and Evolution, (2)

DOI: 10.3389/fevo.2014.00030

Links

Tools

Export citation

Search in Google Scholar

Deciphering behavioral changes in animal movement with a “multiple change point algorithm- classification tree” framework

Journal article published in 2014 by Bénédicte Madon ORCID, Yves Hingrat
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The recent development of tracking tools has improved our nascent knowledge on animal movement. Because of model complexity, unrealistic a priori hypotheses and heavy computational resources, behavioral changes along an animal path are still often assessed visually. A new avenue has recently been opened with change point algorithms because tracking data can be organized as time series with potential periodic change points segregating the movement in segments of different statistical properties. So far this approach was restricted to single change point detection and we propose a straightforward analytical framework based on a recent multiple change point algorithm: the PELT algorithm, a dynamic programming pruning search method to find, within time series, the optimal combination of number and locations of change points. Data segments found by the algorithm are then sorted out with a supervised classification tree procedure to organize segments by movement classes. We apply this framework to investigate changes in variance in daily distances of a migratory bird, the Macqueen's Bustard, Chlamydotis macqueenii, and describe its movements in three classes: staging, non-migratory and migratory movements. Using simulation experiments, we show that the algorithm is robust to identify exact behavioral shift (on average more than 80% of the time) but that positive autocorrelation when present is likely to lead to the detection of false change points (in 36% of the iterations with an average of 1.97 (SE = 0.06) additional change points). A case study is provided to illustrate the biases associated with visual analysis of movement patterns compared to the reliability of our analytical framework. Technological improvement will provide new opportunities for the study of animal behavior, bringing along huge and various data sets, a growing challenge for biologists, and this straightforward and standardized framework could be an asset in the attempt to decipher animal behavior.