Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Inorganic Chemistry, 17(50), p. 8490-8493, 2011

DOI: 10.1021/ic201080z

Links

Tools

Export citation

Search in Google Scholar

On the Formation of "Hypercoordinated" Uranyl Complexes

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recent gas-phase experimental studies suggest the presence of hypercoordinated uranyl complexes. Coordination of acetone (Ace) to uranyl to form hypercoordinated species is examined using density functional theory (DFT) with a range of functionals and second-order perturbation theory (MP2). Complexes with up to eight acetones were studied. It is shown that no more than six acetones can bind directly to uranium and that the observed uranyl complexes are not hypercoordinated. In addition, other more exotic species involving proton transfer between acetones and species involving enol tautomers of acetone are high-energy species that are unlikely to form.