American Physical Society, Physical Review Letters, 20(94), 2005
DOI: 10.1103/physrevlett.94.207208
Full text: Download
The substitution of one metal ion in a Cr-based molecular ring with dominant antiferromagnetic couplings allows the engineering of its level structure and ground-state degeneracy. Here we characterize a Cr7Ni molecular ring by means of low-temperature specific-heat and torque-magnetometry measurements, thus determining the microscopic parameters of the corresponding spin Hamiltonian. The energy spectrum and the suppression of the leakage-inducing S mixing render the Cr7Ni molecule a suitable candidate for the qubit implementation, as further substantiated by our quantum-gate simulations.