Published in

American Institute of Physics, The Journal of Chemical Physics, 14(126), p. 144707

DOI: 10.1063/1.2717162

Links

Tools

Export citation

Search in Google Scholar

Molecular dynamics simulations of stretched gold nanowires: The relative utility of different semiempirical potentials

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The mechanical elongation of a finite gold nanowire has been studied by molecular dynamics simulations using different semiempirical potentials for transition metals. These potentials have been widely used to study the mechanical properties of finite metal clusters. Combining with density functional theory calculations along several atomic-configuration trajectories predicted by different semiempirical potentials, the authors conclude that the second-moment approximation of the tight-binding scheme (TB-SMA) potential is the most suitable one to describe the energetics of finite Au clusters. They find that for the selected geometries of Au wires studied in this work, the ductile elongation of Au nanowires along the [001] direction predicted by the TB-SMA potential is largely independent of temperature in the range of 0.01-298 K. The elongation leads to the formation of monatomic chains, as has been observed experimentally. The calculated force-versus-elongation curve is remarkably consistent with available experimental results.