Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Parallel and Distributed Computing, (76), p. 32-48, 2015

DOI: 10.1016/j.jpdc.2014.11.002

Links

Tools

Export citation

Search in Google Scholar

On the energy efficiency and performance of irregular application executions on multicore, NUMA and manycore platforms

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Until the last decade, performance of HPC architectures has been almost exclusively quantified by their processing power. However, energy efficiency is being recently considered as important as raw performance and has become a critical aspect to the development of scalable systems. These strict energy constraints guided the development of a new class of so-called light-weight manycore processors. This study evaluates the computing and energy performance of two well-known irregular NP-hard problems–the Traveling-Salesman Problem (TSP) and K-Means clustering–and a numerical seismic wave propagation simulation kernel–Ondes3D–on multicore, NUMA, and manycore platforms. First, we concentrate on the nontrivial task of adapting these applications to a manycore, specifically the novel MPPA-256 manycore processor. Then, we analyze their performance and energy consumption on those different machines. Our results show that applications able to fully use the resources of a manycore can have better performance and may consume from 3.8 × to 13 × less energy when compared to low-power and general-purpose multicore processors, respectively.