Published in

Wiley Open Access, FASEB Journal, 10(18), p. 1099-1101, 2004

DOI: 10.1096/fj.03-1072fje

Links

Tools

Export citation

Search in Google Scholar

Formation of amyloid aggregates from human lysozyme and its disease-associated variants using hydrostatic pressure

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Formation of amyloid deposits from the Ile56Thr or Asp67His variants of human lysozyme is a hallmark of autosomal hereditary systemic amyloidosis. It has recently been shown that amyloid fibrils can be formed in vitro from wild-type (WT), I56T, or D67H lysozyme variants upon prolonged incubation at acidic pH and elevated temperatures (1). Here, we have used hydrostatic pressure as a tool to generate amyloidogenic states of WT and variant lysozymes at physiological pH. WT or variant lysozyme samples were initially compressed to 3.5 kbar (at 57 degrees C, pH 7.4). Decompression led to the formation of amyloid fibrils, protofibrils, or globular aggregates, as indicated by light scattering, thioflavin T fluorescence, and transmission electron microscopy analysis. Increased 1-anilinonaphthalene-8-sulfonate binding to the proteins was also observed, indicating exposure of hydrophobic surface area. Thus, pressure appears to induce a conformational state of lysozyme that aggregates readily upon decompression. These results support the notion that amyloid aggregation results from the formation of partially unfolded protein conformations and suggest that pressure may be a useful tool for the generation of the amyloidogenic conformations of lysozyme and other proteins.