Taylor and Francis Group, Connective Tissue Research, 1(52), p. 2-17, 2010
DOI: 10.3109/03008207.2010.511353
Full text: Download
The fibrous collagens form the structural basis of all mammalian connective tissues, including the vasculature, dermis, bones, tendons, cartilage, and those tissues that support organs such as the heart, kidneys, liver, and lungs. The helical structure of collagen has been extensively studied but in addition to its helical character, its molecular packing arrangement (in its aggregated or fibrillar form) and the presence of specific amino acid sequences govern collagen's in vivo functions. Collagen's molecular packing arrangement helps control cellular communication, attachment and movement, and conveys its tissue-specific biomechanical properties. Recent progress in understanding collagen's molecular packing, fibrillar structure, domain organization, and extracellular matrix (ECM) interactions in light of X-ray fiber diffraction data provides significant new insights into how the ECM is organized and functions. In this review, the hierarchy of fibrillar collagen structure is discussed in the context of how this organization affects ECM-"ligand" interactions, with specific attention to collagenolysis, integrins, fibronection, glycoprotein VI receptor (GPVI), and proteoglycans (PG). Understanding the complex structure of collagen and its attached ligands should provide new insights into tissue growth, development, regeneration, and disease.