Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Image Processing, 12(16), p. 2992-3004, 2007

DOI: 10.1109/tip.2007.909319

Links

Tools

Export citation

Search in Google Scholar

A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration

Journal article published in 2007 by José M. Bioucas Dias, Mario A. T. Figueiredo ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Iterative shrinkage/thresholding (IST) algorithms have been recently proposed to handle a class of convex unconstrained optimization problems arising in image restoration and other linear inverse problems. This class of problems results from combining a linear observation model with a nonquadratic regularizer (e.g., total variation or wavelet-based regularization). It happens that the convergence rate of these IST algorithms depends heavily on the linear observation operator, becoming very slow when this operator is ill-conditioned or ill-posed. In this paper, we introduce two-step IST (TwIST) algorithms, exhibiting much faster convergence rate than IST for ill-conditioned problems. For a vast class of nonquadratic convex regularizers (l(p) norms, some Besov norms, and total variation), we show that TwIST converges to a minimizer of the objective function, for a given range of values of its parameters. For noninvertible observation operators, we introduce a monotonic version of TwIST (MTwIST); although the convergence proof does not apply to this scenario, we give experimental evidence that MTwIST exhibits similar speed gains over IST. The effectiveness of the new methods are experimentally confirmed on problems of image deconvolution and of restoration with missing samples.