Published in

Elsevier, Thin Solid Films, 1-2(402), p. 83-89

DOI: 10.1016/s0040-6090(01)01597-8

Links

Tools

Export citation

Search in Google Scholar

A comprehensive study of SiC growth processes in a VPE reactor

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We performed an experimental study of the effect of the gas phase composition on the growth mechanism of 3C-SiC on Si(100) by atmospheric-pressure vapour phase epitaxy at 1350°C. Silane and propane diluted in hydrogen were used as precursors for the growth. We demonstrate the existence of an equilibrium partial pressure of carbon above the growing surface, which ensures a mirror-like morphology. For too low a carbon partial pressure (C/Si ratio in the gas phase lower than 2.7 with a growth rate of 3 μm h−1), the layer morphology and crystalline quality quickly degrade. For too high a carbon partial pressure (C/Si ratio higher than 5 with the same growth rate), SiC clusters form on the growing layers. We propose a mechanism of formation for these clusters taking into account the interactions between the C and Si species in the hot boundary layer.