Published in

The Company of Biologists, Journal of Cell Science, 1(122), p. 103-113, 2009

DOI: 10.1242/jcs.035873

Links

Tools

Export citation

Search in Google Scholar

Moesin is required for HIV-1-induced CD4-CXCR4 interaction, F-actin redistribution, membrane fusion and viral infection in lymphocytes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The human immunodeficiency virus 1 (HIV-1) envelope regulates the initial attachment of viral particles to target cells through its association with CD4 and either CXCR4 or CCR5. Although F-actin is required for CD4 and CXCR4 redistribution, little is known about the molecular mechanisms underlying this fundamental process in HIV infection. Using CD4(+) CXCR4(+) permissive human leukemic CEM T cells and primary lymphocytes, we have investigated whether HIV-1 Env might promote viral entry and infection by activating ERM (ezrin-radixin-moesin) proteins to regulate F-actin reorganization and CD4/CXCR4 co-clustering. The interaction of the X4-tropic protein HIV-1 gp120 with CD4 augments ezrin and moesin phosphorylation in human permissive T cells, thereby regulating ezrin-moesin activation. Moreover, the association and clustering of CD4-CXCR4 induced by HIV-1 gp120 requires moesin-mediated anchoring of actin in the plasma membrane. Suppression of moesin expression with dominant-negative N-moesin or specific moesin silencing impedes reorganization of F-actin and HIV-1 entry and infection mediated by the HIV-1 envelope protein complex. Therefore, we propose that activated moesin promotes F-actin redistribution and CD4-CXCR4 clustering and is also required for efficient X4-tropic HIV-1 infection in permissive lymphocytes.