Published in

American Association for Cancer Research, Cancer Research, 13(64), p. 4481-4486, 2004

DOI: 10.1158/0008-5472.can-03-2929

Links

Tools

Export citation

Search in Google Scholar

Modulation of tumor-host interactions, angiogenesis, and tumor growth by tissue inhibitor of metalloproteinase 2 via a novel mechanism

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Solid tumors depend on angiogenesis for sustained growth. Tissue inhibitor of metalloproteinase 2 (TIMP-2) is an angiogenesis inhibitor initially characterized for its ability to block matrix metalloproteinases; however, recent data suggest that the antiangiogenic action of TIMP-2 may rely on matrix metalloproteinase-independent mechanisms. The aim of this study was to identify molecular pathways involved in the effects of TIMP-2 on processes dependent on tumor-host interactions such as angiogenesis. Using in vitro cell culture and a syngeneic murine tumor model, we compared the effects of TIMP-2 overexpression on gene expression profiles in vitro to those observed in vivo. Validating these findings by real-time quantitative PCR and layered protein scanning, we identified up-regulation of mitogen-activated protein kinase phosphatase 1 as an effector of the antiangiogenic function of TIMP-2. Up-regulation of mitogen-activated protein kinase phosphatase 1 in tumors overexpressing TIMP-2 leads to dephosphorylation of p38 mitogen-activated protein kinase and inhibition of tumor growth and angiogenesis. Phosphatase activity appears important in regulating tumor angiogenesis, offering a promising direction for the identification of novel molecular targets and antiangiogenic compounds for the treatment of cancer.