Published in

Springer (part of Springer Nature), Evolutionary Biology

DOI: 10.1007/s11692-015-9350-7

Links

Tools

Export citation

Search in Google Scholar

Bone Growth Dynamics of the Facial Skeleton and Mandible in Gorilla gorilla and Pan troglodytes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Adult craniofacial morphology results from complex processes that involve growth by bone modelling and interactions of skeletal components to keep a functional and structural balance. Previous analyses of growth dynamics in humans revealed critical changes during late ontogeny explaining particular morphological features in our species. Data on bone modelling patterns from other primate species could help us to determine whether postnatal changes in the growth dynamics of the craniofacial complex are human specific or are shared with other primates. However, characterizations of bone modelling patterns through ontogeny in non-human hominids are scarce and restricted to isolated data on facial and mandibular regions. In the present study, we analyse the bone modelling patterns in an ontogenetic series of Pan and Gorilla to infer the growth dynamics of their craniofacial complex during postnatal development. Our results show that both Pan troglodytes and Gorilla gorilla are characterized by species-specific bone modelling patterns indicative of a mainly forward growth direction during postnatal development. Both species show minor but consistent ontogenetic changes in the distribution of bone modelling fields in specific regions of the face and mandible, in contrast to other regions which show more constant bone modelling patterns. In addition, we carry out a preliminary integrative study merging histological and geometric morphometric data. Both approaches yield highly complementary data, each analysis providing details on specific growth dynamics unavailable to the other. Moreover, geometric morphometric data show that ontogenetic variation in the modelling pattern of the mandibular ramus may be linked to sexual dimorphism.