Published in

American Meteorological Society, Journal of Atmospheric and Oceanic Technology, 5(31), p. 1181-1188, 2014

DOI: 10.1175/jtech-d-14-00019.1

Links

Tools

Export citation

Search in Google Scholar

A New Sea Surface Height–Based Code for Oceanic Mesoscale Eddy Tracking

Journal article published in 2014 by Evan Mason, Ananda Pascual ORCID, James C. McWilliams
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractThis paper presents a software tool that enables the identification and automated tracking of oceanic eddies observed with satellite altimetry in user-specified regions throughout the global ocean. As input, the code requires sequential maps of sea level anomalies such as those provided by Archiving, Validation, and Interpretation of Satellite Oceanographic (AVISO) data. Outputs take the form of (i) data files containing eddy properties, including position, radius, amplitude, and azimuthal (geostrophic) speed; and (ii) sequential image maps showing sea surface height maps with active eddy centers and tracks overlaid. The results given are from a demonstration in the Canary Basin region of the northeast Atlantic and are comparable with a published global eddy track database. Some discrepancies between the two datasets include eddy radius magnitude, and the distributions of eddy births and deaths. The discrepancies may be related to differences in the eddy identification methods, and also possibly to differences in the smoothing of the sea surface height maps. The code is written in Python and is made freely available under a GNU license (http://www.imedea.uib.es/users/emason/py-eddy-tracker/).