American Association for the Advancement of Science, Science, 6100(337), p. 1326-1329, 2012
Full text: Download
Visualizing Bond Order Bond lengths in conjugated molecules closely reflect individual bond order and are usually determined by diffraction methods. It is valuable to know bond order for rationalizing aromaticity, and reactivity and for chemical structure determination. Gross et al. (p. 1326 ; see the Perspective by Perez and the cover) differentiated the bond orders in individual molecules in the fullerene C 60 and in polyaromatic hydrocarbons by imaging with noncontact atomic force microscopy (AFM). The molecules were adsorbed onto a copper surface, and the AFM tip was decorated with a CO molecule, which was used to measure tip frequency shifts above the bonds and their apparent lengths. Multiple bonds appeared brighter in the images because of stronger Pauli repulsion, and their shorter length was amplified by bending of the CO at the tip apex.