Published in

Elsevier, European Journal of Pharmacology, 1-3(636), p. 126-136, 2010

DOI: 10.1016/j.ejphar.2010.03.044

Links

Tools

Export citation

Search in Google Scholar

Greater cytosolic and mitochondrial calcium transients in adrenal medullary slices of hypertensive, compared with normotensive rats

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Pronounced differences in the kinetics of single-vesicle catecholamine release from adrenal chromaffin cells stimulated with acetylcholine or high potassium (K(+)) have been recently found between normotensive Wistar rats (NWRs) and spontaneously hypertensive rats (SHRs). Such differences could be explained on the basis of distinct mechanisms of calcium (Ca(2+)) handling by chromaffin cells of NWRs and SHRs. We have explored here this hypothesis in adrenal medullary slices loaded with calcium fluorescent probes to measure the changes in Ca(2+) concentration in the cytosol ([Ca(2+)](c)), endoplasmic reticulum ([Ca(2+)](er)), and mitochondria ([Ca(2+)](m)). We found the following differences on calcium handling in SHRs, as compared with NWR: (i) higher basal [Ca(2+)](c) and basal [Ca(2+)](m); (ii) greater [Ca(2+)](c) elevations elicited by acetylcholine and K(+), with faster activation but slower inactivation; (iii) greater [Ca(2+)](c) elevations elicited by CRT (a mixture of caffeine, ryanodine, and thapsigargin) and by the mitochondrial protonophore FCCP (carbonylcyanide p-(trifluoromethoxy) phenylhydrazone). The higher basal [Ca(2+)](c) and [Ca(2+)](m) suggest an enhanced mitochondrial Ca(2+) uptake, and the greater [Ca(2+)](c) elevations produced by FCCP indicates a higher mitochondrial Ca(2+) release into the cytosol. This alteration of intracellular Ca(2+) movements could explain the greater quantal catecholamine release responses seen in SHRs, as compared with NWRs in previous studies. Furthermore, enhanced mitochondrial Ca(2+) cycling may be the basis for the dysfunction of mitochondrial bioenergetics, reported to be present in hypertensive states.