Michigan Publishing, Arkivoc, 5(2010), p. 142-169, 2009
DOI: 10.3998/ark.5550190.0011.514
Full text: Download
The nitro group is active in metabolic systems and can be found as an integral part of a number of useful curative drugs and many toxic substances. The basis for much of this activity is not fully understood. It is not necessarily caused directly by through-bond electronic effects but may also be due to direct H-bonding to nitro or to indirect interference by the nitro group with existing H-bonding. An unusual effect of a nitro substituent on kinetic results from urethane addition/elimination reactions (Scheme 1) has been ascribed to some form of self-association, which was neither specified nor quantified. To investigate self-association phenomena caused by a nitro group, a bond energy/bond order formula for N-O bonds has been developed and then used to interpret relative amounts of covalent and ionic contributions to total N-O bond energy. Calculated bond energies were then used to obtain enthalpies of formation for H-bonds to nitro groups in crystals and in solution. Similar results from solution data reveal that direct H-bonding to nitro is much weaker than in crystals, unless intramolecular H-bonding can occur. The results revealed that the 'self-association' effects observed for nitro substituents in urethanes (Scheme 1) were not caused by nitro participating directly in intermolecular bonding to NH of another urethane but by an indirect intramolecular action of the nitro group on pre-existing normal NH-O amide/amide type H-bonding.