Published in

Institute of Electrical and Electronics Engineers, IEEE Journal of Emerging and Selected Topics in Power Electronics, 1(2), p. 14-25, 2014

DOI: 10.1109/jestpe.2013.2294922

Links

Tools

Export citation

Search in Google Scholar

A New Power Conversion System for Megawatt PMSG Wind Turbines Using Four-Level Converters and a Simple Control Scheme Based on Two-Step Model Predictive Strategy—Part II: Simulation and Experimental Analysis

Journal article published in 2014 by Venkata Yaramasu, Bin Wu, Jose Rodriguez, Marco Rivera ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this paper, a new medium-voltage power conversion system consisting of a four-level boost converter and four-level diode-clamped inverter is proposed for permanent magnet synchronous generator-based megawatt-level wind turbines. To achieve a simple and optimal control performance, a simplified two-step model predictive strategy is proposed. The high-power wind turbine requirements, which include maximum energy harvesting, balancing of dc-link capacitor voltages, net dc-bus voltage control, regulation of grid-reactive power, and the minimization of both switching frequency and common-mode voltage are expressed as cost functions. The best switching states are chosen and applied to the power converters during each sampling interval based on the minimization of cost functions. The feasibility of the proposed configuration and control scheme are verified through MATLAB/Simulink tests on a high power (5 MVA/4160 V/694 A) system and dSPACE experiments on a low power (3.6 kVA/208 V/10 A) prototype.