Dissemin is shutting down on January 1st, 2025

Published in

Thieme Gruppe, Hormone and Metabolic Research, 12(40), p. 869-874, 2008

DOI: 10.1055/s-0028-1082083

Links

Tools

Export citation

Search in Google Scholar

Modifying RANKL/OPG mRNA expression in differentiating and growing human primary osteoblasts

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The OPG/RANKL system in primary cultures of human osteoblasts has been studied by different authors. However, very few studies have been performed on gene expression of RANKL and OPG at different stages of maturation on human osteoblast cultures. The effect of 17- beta-estradiol and 1,25dihydroxyvitamin D3 on the OPG/RANKL system is not known during the different states of cellular maturation. In this work we quantified OPG and RANKL protein levels (ELISA) and the mRNA of OPG, RANKL, collagen type I, alkaline phosphatase, and osteocalcin (semi-quantitative RT-PCR) in human osteoblasts. We analyzed these in basal conditions and after incubation with 17- beta-estradiol and 1,25dihydroxyvitamin D3 in the first and second phases. We found that OPG secretion and expression levels increased throughout cellular growth. RANKL proteins were detected only in the first stage, and the expression increased throughout the first phase. Thus, the RANKL/OPG ratio was higher in immature osteoblasts than in mature osteoblasts. The evolution of RANKL gene expression was related to collagen I and alkaline phosphatase, while OPG was related to osteocalcin. We observed no modifications after estradiol and 1,25dihydroxyvitamin D3 treatment. Our results suggest that the OB is a positive stimulator at precocious stages of differentiation on osteoclastogenic modulates.