Published in

Elsevier, Nano Energy, 1(1), p. 107-131, 2012

DOI: 10.1016/j.nanoen.2011.11.001

Links

Tools

Export citation

Search in Google Scholar

Graphene/metal oxide composite electrode materials for energy storage

Journal article published in 2012 by Zhong-Shuai Wu ORCID, Guangmin Zhou, Li-Chang Yin, Wencai Ren, Feng Li, Hui-Ming Cheng
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recent progress on graphene/metal oxide composites as advanced electrode materials in lithium ion batteries (LIBs) and electrochemical capacitors (ECs) is described, highlighting the importance of synergistic effects between graphene and metal oxides and the beneficial role of graphene in composites for LIBs and ECs. It is demonstrated that, when the composites are used as electrode materials for LIBs and ECs, compared to their individual constituents, graphene/metal oxide composites with unique structural variables such as anchored, wrapped, encapsulated, sandwich, layered and mixed models have a significant improvement in their electrochemical properties such as high capacity, high rate capability and excellent cycling stability. First, an introduction on the properties, synthesis strategies and use of graphene is briefly given, followed by a state-of-the-art review on the preparation of graphene/metal oxide composites and their electrochemical properties in LIBs and ECs. Finally, the prospects and future challenges of graphene/metal oxide composites for energy storage are discussed.