Published in

Wiley, Advanced Functional Materials, 42(23), p. 5297-5306, 2013

DOI: 10.1002/adfm.201300605

Links

Tools

Export citation

Search in Google Scholar

Graphene Paper Doped with Chemically Compatible Prussian Blue Nanoparticles as Nanohybrid Electrocatalyst

Journal article published in 2013 by Nan Zhu, Shuang Han, Shiyu Gan, Jens Ulstrup, Qijin Chi ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Along with reduced graphene oxide (RGO), water soluble Prussian blue nanoparticles (PBNPs, around 6 nm) are synthesized and broadly characterized. These two types of highly stable, low-cost and chemically compatible nanomaterials are exploited as building ingredients to prepare electrically enhanced and functionally endorsed nanohybrid electrocatalysts, which are further transformed into free-standing graphene papers. PBNPs doped graphene papers show highly efficient electrocatalysis towards reduction of hydrogen peroxide and can be used alone as flexible chemical sensors for potential applications in detection of hydrogen peroxide or/and other organic peroxides. The as-prepared PBNPs–RGO papers are further capable of biocompatible accommodation of enzymes for development of free-standing enzyme based biosensors. In this regard, glucose oxidase is used as an example for electrocatalytic oxidation and detection of glucose. The present work demonstrates a facile and highly reproducible way to construct free-standing and flexible graphene paper doped with electroactive catalyst. Thanks to high stability, low-cost and efficient electrocatalytic characteristics, this kind of nanohybrid material has potential to be produced on a large scale, and offers a broad range of possible applications, particularly in the fabrication of flexible sensing devices and as a platform for electrocatalytic energy conversion.