Published in

MDPI, Sensors, 4(7), p. 420-437, 2007

DOI: 10.3390/s7040420

Links

Tools

Export citation

Search in Google Scholar

Modifications of Poly(o-phenylenediamine) Permselective Layer on Pt-Ir for Biosensor Application in Neurochemical Monitoring

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Reports that globular proteins could enhance the interference blocking ability of the PPD (poly(o-phenylenediamine) layer used as a permselective barrier in biosensor design, prompted this study where a variety of modifying agents were incorporated into PPD during its electrosynthesis on Pt-Ir electrodes. Trapped molecules, including fibrous proteins and β-cyclodextrin, altered the polymer/modifier composite selectivity by affecting the sensitivity to both H2O2 (signal molecule in many enzyme-based biosensors) and the archetypal interference species, ascorbic acid. A comparison of electrochemical properties of Pt and a Pt-Ir alloy suggests that the benefits of the latter, more rigid, metal can be exploited in PPD-based biosensor design without significant loss of backward compatibility with studies involving pure Pt.