Published in

Optica, Optics Express, 20(22), p. 24276, 2014

DOI: 10.1364/oe.22.024276

Links

Tools

Export citation

Search in Google Scholar

Graphene coated ZnO nanowire optical waveguides

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We report the fabrication and characterization of freestanding graphene coated ZnO nanowires (GZNs) for optical waveguiding. The GZNs are fabricated using a tape-assist transfer under micromanipulation. Owing to the deep-subwavelength diameter and high index contrast of the ZnO nanowire waveguide, light-graphene interaction is significantly enhanced by the strong surface optical fields, resulting in a linear absorption as high as 0.11 dB/µm in a 606-nm-diameter GZN at 1550-nm wavelength. Launched by 1550-nm-wavelength femto-second pulses, a 475-nm-diameter GZN with a graphene coating length of merely 24 µm exhibits evident nonlinear saturable absorption with a peak power threshold down to 1.3 W. In addition, we also demonstrate a transmission modulation for 1550-nm-wavelength signal with a 590-nm-diameter GZN, showing the possibility of using GZN waveguides as nanoscale bulding blocks for nanophotonic devices.