Published in

Cold Spring Harbor Laboratory Press, Genes & Development, 22(21), p. 2874-2879, 2007

DOI: 10.1101/gad.443907

Links

Tools

Export citation

Search in Google Scholar

Riboswitch-dependent gene regulation and its evolution in the plant kingdom

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Riboswitches are natural RNA sensors that affect gene control via their capacity to bind small molecules. Their prevalence in higher eukaryotes is unclear. We discovered a post-transcriptional mechanism in plants that uses a riboswitch to control a metabolic feedback loop through differential processing of the precursor RNA 3′ terminus. When cellular thiamin pyrophosphate (TPP) levels rise, metabolite sensing by the riboswitch located in TPP biosynthesis genes directs formation of an unstable splicing product, and consequently TPP levels drop. When transformed in plants, engineered TPP riboswitches can act autonomously to modulate gene expression. In an evolutionary perspective, a TPP riboswitch is also present in ancient plant taxa, suggesting that this mechanism is active since vascular plants emerged 400 million years ago.