Published in

Elsevier, Atmospheric Environment, (102), p. 1-10, 2015

DOI: 10.1016/j.atmosenv.2014.11.042

Links

Tools

Export citation

Search in Google Scholar

Natural organic matter in urban aerosols: Comparison between water and alkaline soluble components using excitation–emission matrix fluorescence spectroscopy and multiway data analysis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Understanding the complexity of Natural Organic Matter (NOM) in atmospheric aerosols has remained an important goal for the atmospheric research community. This work employs a Parallel Factor Model (PARAFAC) with Alternating Least Squares (ALS) algorithm to decompose and further compare sets of excitation-emission matrices fluorescence spectra of Water-soluble and Alkaline-soluble Organic Matter (WSOM and ASOM, respectively), sequentially extracted from urban aerosols collected during different seasons. The PARAFAC-ALS modelling identified three components in both WSOM and ASOM, whose maximum intensities follow a clear seasonal trend and which are likely to represent the dominant fluorescent moieties in NOM from urban aerosols. The PARAFAC-ALS modelling also indicated differences between the colder and warmer seasons in the fluorescence map of one WSOM component, which contrast with the results obtained for the ASOM, where the fluorescence signatures were found to be constant along the seasons, suggesting that the ASOM may have an in situ origin.