Published in

Elsevier, Bioresource Technology, 21(102), p. 9852-9859, 2011

DOI: 10.1016/j.biortech.2011.07.108

Links

Tools

Export citation

Search in Google Scholar

Synergistic action of azoreductase and laccase leads to maximal decolourization and detoxification of model dye-containing wastewaters

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The azoreductase PpAzoR from Pseudomonas putida shows a broader specificity for decolourization of azo dyes than CotA-laccase from Bacillus subtilis. However, the final products of PpAzoR activity exhibited in most cases a 2 to 3-fold higher toxicity than intact dyes themselves. We show that addition of CotA-laccase to PpAzoR reaction mixtures lead to a significant drop in the final toxicity. A sequential enzymatic process was validated through the use of 18 representative azo dyes and three model wastewaters that mimic real dye-containing effluents. A heterologous Escherichia coli strain was successfully constructed co-expressing the genes coding for both PpAzoR and CotA. Whole-cell assays of recombinant strain for the treatment of model dye wastewater resulted in decolourization levels above 80% and detoxification levels up to 50%. The high attributes of this strain, make it a promising candidate for the biological treatment of industrial dye containing effluents.