Published in

Elsevier, International Journal of Approximate Reasoning: Uncertainty in Intelligent Systems, 4(53), p. 693-708, 2012

DOI: 10.1016/j.ijar.2011.11.003

Links

Tools

Export citation

Search in Google Scholar

A new fuzzy based algorithm for solving stereo vagueness in detecting and tracking people

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper describes a system capable of detecting and tracking various people using a new approach based on colour, stereo vision and fuzzy logic. Initially, in the people detection phase, two fuzzy systems are used to filter out false positives of a face detector. Then, in the tracking phase, a new fuzzy logic based particle filter (FLPF) is proposed to fuse stereo and colour information assigning different confidence levels to each of these information sources. Information regarding depth and occlusion is used to create these confidence levels. This way, the system is able to keep track of people, in the reference camera image, even when either stereo information or colour information is confusing or not reliable. To carry out the tracking, the new FLPF is used, so that several particles are generated while several fuzzy systems compute the possibility that some of the generated particles correspond to the new position of people. Our technique outperforms two well known tracking approaches, one based on the method from Nummiaro et al. [1] and other based on the Kalman/meanshift tracker method in Comaniciu and Ramesh [2]. All these approaches were tested using several colour-with-distance sequences simulating real life scenarios. The results show that our system is able to keep track of people in most of the situations where other trackers fail, as well as to determine the size of their projections in the camera image. In addition, the method is fast enough for real time applications.