Published in

American Geophysical Union, Geochemistry, Geophysics, Geosystems, 3(12), p. n/a-n/a, 2011

DOI: 10.1029/2010gc003380

Links

Tools

Export citation

Search in Google Scholar

Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Residual solid products of erosion display a wide range of size, density, shape, mineralogy, and chemical composition and are hydrodynamically sorted in large river channels during their transport. We characterize the chemical and isotopic variability of river sediments of the Amazon Basin, collected at different water depths, as a function of grain size. Absolute chemical concentrations and Sr and Nd isotopic ratios greatly varies along channel depth. The Al/Si ratio, tightly linked to grain size distribution, systematically decreases with depth, mostly reflecting dilution by quartz minerals. A double-normalization diagram is proposed to correct from dilution effects. Elements define fan-shaped patterns and can be classified in three different groups with respect to hydrodynamic sorting during transport in the Amazon: (1) “poorly sorted” insoluble elements like Al, Fe, Th, and REEs, (2) “well-sorted” insoluble elements like Zr and Ti, mainly carried by heavy minerals, and (3) alkali (Na to Cs) and alkali-earth elements (Mg to Ba), for which a large variety of patterns is observed, related, for alkali, to their variable affinity for phyllosilicates. Sr isotopes show that the Amazon River at the mouth is stratified, the Madeira- and Solimões-derived sediments being preferentially transported near the channel surface and at depth, respectively. The comparison between the Solimões and Madeira rivers shows how the interplay between grain sorting, weathering, and crustal composition controls the composition of the suspended river sediments.