Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal, 1(580), p. 579-597, 2002

DOI: 10.1086/343091

Links

Tools

Export citation

Search in Google Scholar

Grain properties of comet C/1995 O1 (Hale-Bopp)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present the analysis of 7.6-13.2 μm infrared (IR) spectrophotometry (R 250) of comet C/1995 O1 (Hale-Bopp), in conjunction with concurrent observations that extend the wavelength coverage of the spectral energy distribution from near- to far-infrared wavelengths. The observations include temporal epochs preperihelion (1996 October and 1997 February UT), near perihelion (1997 April UT), and postperihelion (1997 June UT). Through the modeling of the thermal emission from small, amorphous carbon grains and crystalline and amorphous silicate grains in Hale-Bopp's coma, we find that as the comet approached perihelion, the grain size distribution (the Hanner modified power law) steepened (from N = 3.4 preperihelion to N = 3.7 near and postperihelion), along with an increase in the fractal porosity of larger (greater than 1 μm) grains. The peak of the grain size distribution remained constant (ap = 0.2 μm) at each epoch. We attribute the emergence of the 9.3 μm peak near perihelion to crystalline orthopyroxene grains released during epochs of high jet activity. Crystalline silicates (olivine and orthopyroxene) make up about 30% (by mass) of the submicron-sized (≤1 μm) dust grains in Hale-Bopp's coma during each epoch.